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Abstract

In this paper we construct Einstein spaces with negative Ricci curvature in various dimensions.
These spaces—which can be thought of as generalised AdS spacetimes—can be classified in terms
of the geometry of the horospheres in Poincaré-like coordinates, and can be both homogeneous and
static. By using simple building blocks, which in general are homogeneous Einstein solvmanifolds,
we give a general algorithm for constructing Einstein metrics where the horospheres are products of
generalised Heisenberg geometries, nilgeometries, solvegeometries, or Ricci-flat manifolds. Fur-
thermore, we show that all of these spaces can give rise to black holes with the horizon geometry
corresponding to the geometry of the horospheres, by explicitly deriving their metrics.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent years the study of Anti-de Sitter spaces (AdS) has been intense. Because
they arise as maximally symmetric solutions to the Einstein equations with a negative
cosmological constant they were thought for a long time to be irrelevant to physics and
merely a mathematical curiosity. However, from a mathematical point of view, negatively
curved spaces have an incredibly rich structure[1–3]. For example, one of the biggest
problems in classifying three-manifolds is the enormous number of compact hyperbolic
spaces; in general, one finds the negatively curved spaces have an enormously diverse
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variety. For the AdS spaces—which can be thought of as the Lorentzian versions of the
hyperbolic spaces—this diversity can, for example, be seen in the many AdS black holes
that one knows of[4–8].

AdS spaces have also come in the focus of research after the advent of superstring theory
[9]. One of the most promising ideas is the AdS/CFT correspondence[10] which relates a
supergravity theory in the interior of AdS to a field theory in the boundary of AdS space.
This correspondence illustrates the interplay between the structure of the interior of these
spaces with the structure on the conformal boundary of the AdS space.

In this paper, we shall construct negatively curved Einstein manifolds which are, unlike
the AdS spaces, not maximally symmetric. However, like the AdS spaces, a large class
of them are homogeneous and static, though in general they need not be. However, there
will always exist a non-trivial group acting on the space. This group manifests itself in
horospherical coordinates where the space is foliated into horospheres. The Euclidean AdS
spaces (or real hyperbolic spaces if one likes) in horospherical coordinates1 are simply

ds2 = dw2 + e−2w
n∑
i=1

(dxi)2. (1)

Here, the horospheres are given byw = constant and are flat Euclidean spaces. In this
paper, we shall construct spaces for which the geometries of the horospheres are products
of generalised Heisenberg groups, nilgeometries or solvegeometries. They are negatively
curved Einstein spaces of the form

ds2 = dw2 +
n∑
i=1

e−2qiw(ωi)2. (2)

These spaces are analogous to the AdS spaces and their Lorentzian versions exist in any
dimension higher than four. Higher-dimensional gravity has already given us some surprises,
for example the great variety of black hole spacetimes (see[11] for a review) and even black
strings[12]. In this paper we shall add even more black hole solutions to the myriad of known
black hole spacetimes by finding black holes with horizons modelled on an arbitrary product
of generalised Heisenberg groups, nilgeometries and solvegeometries. These black holes
are not asymptotically AdS; they are asymptotically of the form(2).

This paper is organised as follows. First we consider in detail complex hyperbolic spaces.
These spaces are the simplest non-maximally symmetric, negatively curved Einstein spaces.
In the analysis, we discuss in detail how the horospheres can be equipped with a Heisenberg
geometry. Then, inSection 3, we provide the simplest non-trivial example and solve the field
equations for a space where the horospheres are a product between a Ricci-flat manifold
and a Heisenberg geometry. The solution found is Einstein, and we discuss its isometries
and give conditions for when the space is homogeneous. By considering a hypersurface
in a product of Einstein spaces, we show inSection 4how we can iteratively construct
higher-dimensional Einstein spaces by using simple building blocks. These building blocks
can be any manifold of a certain form, and in particular, they can be any homogeneous
Einstein solvmanifold. Examples of such homogeneous Einstein solvmanifolds are given

1 These are sometimes also called Poincaré coordinates.
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in Section 5. Among these spaces are the so-called Damek–Ricci spaces which have horo-
spheres equipped with generalised Heisenberg geometries. Also, examples where the horo-
spheres are nilgeometries and solvegeometries are given. Lastly, we show that all spaces
constructed by the iterative procedure have black hole analogues. We give explicit metrics
for those black hole solutions which can have horizon geometries modelled on any prod-
uct of generalised Heisenberg groups, nilgeometries and solvegeometries, and a Ricci-flat
space.

2. Complex hyperbolic spaces

The metrics we are going to construct have many common features with the complex
hyperbolic spaces,Hn+1

C
. In fact, the construction is motivated from the existence and

properties of these spaces. We will first review some of the aspects of the complex hyperbolic
spaces which heavily motivated our construction. In this respect, the book by Goldman[13]
is an indispensable source and reference.

The metric can be written in real horospherical coordinates

ds2 = dw2 + e−2w

[
dx + 1

2

n∑
k=1

(ykdzk − zkdyk)

]2

+ e−w
n∑
k=1

[(dyk)2 + (dzk)2].

(3)

The metric is a Kähler metric with constant holomorphic curvature, and thus, is also Einstein.
This form of the metric is particularly useful for our purposes as we shall see. The full
isometry group of this metric isPU(n+ 1,1):

PU(n+ 1,1) ≡ U(n+ 1,1)

∼ , where A ∼ B ⇔ A = λB, λ ∈ C.

At the Lie algebra level this isometry group has the following Iwasawa decomposition:

g = 2⊕
k=−2

gk, (4)

and

n± ≡ g±1 ⊕ g±2, (5)

defines two copies of the(2n+ 1)-dimensional Heisenberg algebra. More precisely

g0 ∼= u(n)× R, g±1 ∼= C
n, g±2 ∼= R, (6)

and [gi, gj] = gi+j. In horospherical coordinates this decomposition is easy to interpret; the
Heisenberg algebran− generates a Heisenberg group,2H, which acts simply transitively on
the horospheresw = constant. Hence, each horosphere has a natural associated Heisenberg

2 We will use a notation where lower case Gothic letters correspond to the Lie algebra; upper case Gothic to the
Lie group; and calligraphic letters to the corresponding geometry (i.e. the Lie group equipped with a left-invariant
metric).
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geometry,H. Furthermore,g0 can be given a geometric interpretation in terms of this
Heisenberg geometry as well.g0 generatesU(n)-rotations, and anR+-dilation with respect
to the origin ofH. More explicitly, introducing the complex column vector

ζ = [y1 + iz1, y2 + iz2 · · · yn + izn]T, (7)

the groupU(n) acts by matrix multiplication

ζ
A→ Aζ. (8)

The isometry group ofH is now given by the semi-direct product

Isom(H) = U(n)� H. (9)

On the Heisenberg space with coordinates(x, ζ) the dilation,φλ, acts as

(x, ζ)
φλ→ (e2λx,eλζ),

which translates into an isometry of the metric(3) by acting along thew-coordinate:

(w, x, ζ)
φλ→ (w+ λ,e2λx,eλζ).

Thesimilarity group ofH is therefore the transformations generated byg0 and the isometries
H:

Sim(H) = (R+ × U(n))� H. (10)

Note that the curve defined by(x, ζ) = constant, is a geodesic fromw = −∞ to ∞. The
geodesic connects two point on the boundary ofH

n+1
C

, denoted∂Hn+1
C

. The point at infinity,
given byw = ∞, corresponds to one point on the boundary. We will call this pointp∞. The
dilation maps the geodesic through the origin of the Heisenberg geometry onto itself. The
algebra,g0, generates all the isometries leaving the geodesic through the origin invariant.

Interestingly, the isometries induce a similarity group on the boundary of the complex hy-
perbolic space in the following sense. The boundary ofH

n+1
C

is topologically a sphereS2n+1.
However, the isometries generated byg0 andH, induce—via relation(10)—similarity trans-
formations on the boundary minus the point at infinity:∂Hn+1

C
− {p∞}. The boundary

∂Hn+1
C

− {p∞} can therefore be considered as a Heisenberg geometry on whichg0 andH

acts as similarity transformations. In fact, the remaining isometries ofH
n+1
C

will act on the
boundary as conformal transformations. However, in our construction later on the remain-
ing isometries will be broken; we will squash the complex hyperbolic space slightly along
thew-coordinate.

This feature of complex hyperbolic spaces is very similar to the real hyperbolic space.
In the real case, the horospheres have a Euclidean geometry,E

n, and the similarity group
Sim(H) is interchanged with the similarity group Sim(En). This is also one of the many
reasons why the AdS spaces are so interesting: they are the Lorentzian versions of real
hyperbolic spaces. It is therefore interesting to know whether it is possible to extend the
interesting geometric properties of the complex hyperbolic spaces to the Lorentzian case.
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3. Some Einstein metrics of dimension (2 + 2n + m)

By including extra dimensions it is possible to construct spaces for which the structure
(10) remains intact. The starting point is a squashed complex hyperbolic space but where
we keep the some of the properties which we discussed earlier. We construct the Einstein
metrics as follows: assume thatM is anm-dimensional Ricci-flat manifold with metric
d̃s

2
m, i.e.

d̃s
2
m = g̃ABdχAdχB, R̃AB = 0. (11)

Then we start with the metric ansatz where the above metric is warped in the following
way3

ds2 = e−2pwd̃s
2
m +Q2dw2 + e−2w

[
dx + 1

2

n∑
k=1

(ykdzk − zkdyk)

]2

+ e−w
n∑
k=1

[(dyk)2 + (dzk)2], (12)

whereQ andp are constants.
The metric ansatz immediately leads to a diagonal Ricci tensor (seeAppendix A) and

the large number of symmetries makes the field equations particularly easy to solve. For
the values

p = n+ 2

2(n+ 1)
, Q2 = 1 + m(n+ 2)

2(n+ 1)2
, (13)

the metric(12) is an Einstein metric with

Rµν = −n+ 2

2
gµν. (14)

Of course, by rescaling the metric(12), we can find a metric withRµν = −α2gµν for any
α2 > 0. Thus, in the following we will consider one particularα2, but bear in mind that any
rescaling is possible.

These spaces have many similarities with the AdS spaces and some of their properties are
directly related to the complex hyperbolic space in horospherical coordinates. The isometry
group of(12) depends on the properties ofM, and in general the metric(12) will not be

homogeneous. Note that if there exists a proper similarity transformation ofd̃s
2
m

ψκ : χA → ψκ(χ
A), ψ∗

κ d̃s
2
m = e2κd̃s

2
m, (15)

whereκ is a non-zero constant, then the dilation,φλ, can be extended to an isometry of(12):

(χA, x, ζ)
φλ→ (ψpλ(χ

A),e2λx,eλζ). (16)

3 Later, we shall give a different interpretation of this metric; namely as a hypersurface in a higher-dimensional
space.
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This leads to the following observation:if M is a homogeneous space and, in addition,
allows for a proper homothety, then the metric given by Eq. (12)is homogeneous.

For the metric(12) to be homogeneous, the existence of a proper homothety ofM is
crucial; however, there are still quite a few spaces having these properties. For example, the
following Ricci-flat spaces are homogeneous and possess a proper homothety:

1. The Euclidean spacesE
m, or the Minkowski spacesMm.

2. Them-dimensional Milne universes.
3. Them-dimensional homogeneous vacuum plane-waves[14].4

There are also examples of homogeneous spacetimesM which do not admit a proper
homothety, and inhomogeneous spacetimes admitting a proper homothety.5

4. Extending the scope: “prime decomposition”

We will here describe an iterative procedure of constructing generalisations of the metric
(12). It is based on a simple observation regarding the Gauss’ equation for hypersurfaces.

Assume we have two negatively curved Einstein manifolds,M, andN, with metrics of
the form

ds2M = dw2 +
m∑
i=1

e−2piw(ωi)2, RAB = −α2gAB, (17)

ds2N = dv2 +
n∑
i=1

e−2qiv(χi)2, Rab = −β2gab. (18)

It is essential here that the one-formsωi andχi both form a closed algebra, i.e. all thew and
v dependence is in the exponential prefactor. Explicitly, this means that the formsωi obey

dωi = −�i
j ∧ ωj, (19)

and�i
j does not involvew.

The construction now goes as follows. We define the product spaceM×N and consider
a hypersurfaceΣ ⊂M×N. Our aim is to tune the parameters and choose the hypersurface
such that the induced metric,hµν, onΣ is an Einstein metric.

From the theory of hypersurfaces, we have the well-known result (the contracted Gauss’
equation, see e.g.[16])

(Σ)Rµν = (M×N)Rαβhαµh
β
ν − (M×N)Rλασβnλn

σhαµh
β
ν + KKµν −KαµKαν. (20)

Here,nµ andKµν are the normal vector field and the extrinsic curvature to the hypersurfaces,
respectively.

4 See also[15] which has some interesting negatively curved Einstein spaces conformally equivalent to the
vacuum plane-waves.

5 See also[11] where examples of compact Ricci-flat manifolds are provided.
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Now using the metrics(17) and (18), the Ricci tensor inM×N becomes block diagonal.
Let us consider the following hypersurface

v = γw, (21)

whereγ is a constant. The unit normal is now given by

n = − γ√
1 + γ2

∂

∂w
+ 1√

1 + γ2

∂

∂v
.

By calculating the Riemann tensor forM×N we get the following for the metrics given
in Eqs. (17) and (18)

(M×N)Rλασβnλn
σhαµh

β
ν = −KαµKαν.

Hence, Gauss’ equation simplifies to
(Σ)Rµν = (M×N)Rαβhαµh

β
ν + KKµν. (22)

Note there are two simple choices for makingΣ an Einstein space. In both cases we choose
α2 = β2 (by rescaling the metric). The first case arises whenKµν ∝ hµν. However, as can
be seen, this happens only whenpi = qj ≡ p. This is a well-known example and does
not give any new solutions. The other case is more interesting and is defined by the choice
K = 0. So, the following will lead to an Einstein space:

α2 = β2, K = 0. (23)

Explicitly, the requirementK = 0 leads to

γ

m∑
i=1

pi −
n∑
i=1

qi = 0. (24)

From this,γ can be found and the metric onΣ becomes (after rescalingw)

ds2Σ = dw2 +
m∑
i=1

e−2Piw(ωi)2 +
n∑
i=1

e−2Qiw(χi)2,

Pi = 1√
1 + γ2

pi, Qi = γ√
1 + γ2

qi. (25)

Using this procedure, we can iteratively construct negatively curved Einstein spaces in
higher dimensions using building blocks of the form(17). Thus we have provided a product
rule for the geometry of the horosphere. Assume thatM(H1) andM(H2) are Einstein
metrics of the above form with horospheres equipped with the geometriesH1 andH2,
respectively. Then we have a product rule

M(H1)�M(H2) = M(H1 ×H2), (26)

given byM(H1)�M(H2) ∼= Σ ⊂ M(H1)×M(H2) with the induced metric. Note that

[M(H1)�M(H2)] �M(H3) = M(H1)� [M(H2)�M(H3)],

i.e. the operation� is associative. In this way the classification reduces to considering
irreducible “prime” manifoldsM(Hi).
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4.1. General formula

In fact, we can also give a general formula for the exponents. Assume that we haveN

Einstein spaces

ds2A = dw2 +
mA∑
i=1

e−2pi(A)w(ωi(A))
2, Rµν = −α2gµν, A = 1, . . . , N. (27)

Then there is an Einstein space

ds2 = dw2 +
N∑
A=1

mA∑
i=1

e−2qi(A)w(ωi(A))
2, Rµν = −α2gµν, (28)

where

qi(A) = pi(A)

mA∑
j=1

pj(A)


 N∑
B=1

mB∑
j=1

pj(B)

2


−1/2

. (29)

5. Einstein solvmanifolds

Note that we have assumed in the above construction that the metric can be more general
than the usual complex and real hyperbolic spaces. Thus we may wonder if there are other
“building blocks” than the ones already considered of the form(17). Indeed there are and,
in fact, they are so numerous that not all such manifolds are known. However, here we
will consider some generalisations of these building blocks; namely homogeneous Einstein
solvmanifolds.

Let us consider the homogeneous spaces for which the Lie algebras,s, obey (see e.g.
[17]):

1. The Iwasawa decomposition has the following orthogonal decomposition:

s = a ⊕ n, [s, s] = n,
wherea is abelian, andn is nilpotent.

2. All operators adX,X ∈ a are symmetric.
3. For someX0 ∈ a, adX0|n has positive eigenvalues.

These Lie algebras give rise to group manifolds, and sinces is a solvable algebra, these
are so-calledsolvmanifolds. By using the left-invariant one-forms we can turn the groups
into Riemannian homogeneous spaces. These spaces can always be put onto the form(17)
and they are strong candidates for Einstein spaces with negative curvature[17,18].

The different classes of these solvmanifolds are characterised by the dimension ofa and
the property of the nilpotent partn. Some general results are known, but a complete list of
manifolds of this type is lacking. Here, due to the multiplication rule as given above, we
will only consider the cases wheres leads to an irreducible solvmanifoldM(H).
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5.1. dim(a) = 1, and n abelian

These are the well-known hyperbolic spaces. The metric can be written on the form given
in Eq. (1).

5.2. dim(a) = 1, and n generalised Heisenberg algebra: Damek–Ricci spaces

In this case, we can construct all possible cases. The nilpotent partn are generalised
Heisenberg algebras, and the extended solvable group give rise to so-called Damek–Ricci
spaces.

5.2.1. Generalised Heisenberg algebras
The (ordinary)(2n + 1)-dimensional Heisenberg algebra is the nilpotent part of the

Iwasawa decomposition of Isom(Hn+1
C

). Here we will consider thegeneralised Heisenberg
spaces,6 Hm,n. The generalised Heisenberg algebras are defined as follows. Letb andz
be real vector spaces of dimensionm andn, respectively, such thatn is the orthogonal
sumn = b⊕ z. Assume that the commutator is a map [−,−] : n × n → z and [z, z] = 0.
Furthermore, assume that there exists aJ : z → End(b), Z → JZ such that

〈[X, Y ], Z〉 = 〈Y, JZX〉, X, Y ∈ b, Z ∈ z.
The triple(b, z, J) defines uniquely a two-step nilpotent algebran and, in fact, a two-step
nilpotent simply connected Lie group with a left-invariant metric. We say thatn is agener-
alised Heisenberg algebra if, in addition

J2
Z = −〈Z,Z〉Idb, ∀Z ∈ z.

The generalised Heisenberg spaces,Hm,n, are the corresponding group manifolds equipped
with orthonormal left-invariant one-forms of the form

ωA = dxA + 1
2B

A
aby

adyb, A = 1, . . . , m, ωa = dya, a = 1, . . . , n. (30)

Here areBAab antisymmetric in the lower indices. It should be noted that, given anm, not
all n’s are allowed. For example, form = 1, which gives the ordinary Heisenberg spaces,
only evenn are allowed. In general, the numbern can have the following values:

n = kn0, k ∈ N, (31)

wheren0 is given inTable 1. For each of these values there is a unique Heisenberg space,
except form = 3 (mod 4) where there can be many non-equivalent Heisenberg spaces for
a given dimension (see[19] for details).

In particular, the generalised Heisenberg algebras are two-step nilpotent, i.e. [[n, n], n] =
0. As the Lie exponential map, expn : n → Hm,n, is a diffeomorphism, the Heisenberg
group,Hm,n, will also be a two-step nilpotent group. However, note that not all two-step
nilpotent groups are generalised Heisenberg groups.7

6 See e.g.[19].
7 For example, the two-step nilpotent algebraA5,1 in [31] is not a generalised Heisenberg algebra.
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Table 1
Generalised Heisenberg spaces: the different allowed values ofn0 for a givenm

m 8p 8p+ 1 8p+ 2 8p+ 3 8p+ 4 8p+ 5 8p+ 6 8p+ 7

n0 24p 24p+1 24p+2 24p+2 24p+3 24p+3 24p+3 24p+3

5.2.2. Damek–Ricci spaces
Using these generalised Heisenberg groups we can construct other group manifolds which

are calledDamek–Ricci spaces. These spaces are group manifolds similar to the complex
hyperbolic spaces and have an Iwasawa decomposition where the generalised Heisenberg
algebras will appear[20]. The Damek–Ricci spaceSm,n, is defined as the manifold having
the (globally defined) orthonormal left-invariant one-forms[19]

ωA = e−w(dxA + 1
2B

A
aby

adyb), A = 1, . . . , m, ωa = e−w/2dya,

a = 1, . . . , n, ωw = dw. (32)

Hence, they are of dimension(n + m + 1). Furthermore, the Damek–Ricci spaces are
Einstein manifolds with negative curvature[21]:

Rµν = −(m+ 1
4n)gµν. (33)

Thus they are spaces obeying(17).
As explained earlier, these Damek–Ricci spaces are homogeneous group manifolds of

solvable type. The derived Lie algebra, [s, s] = n, is of generalised Heisenberg type.
Note that the casem = 1 we haveS1,2n ∼= H

n+1
C

, so these spaces generalise the complex

hyperbolic spaces. Moreover, the quaternionic hyperbolic spaceH
n+1
H

, is one of theS3,4n

spaces, and the Cayley hyperbolic plane,CayH
2, is isometric to theS7,8 space. Hence, all

of the division algebras can be realised in these spaces.8

5.3. dim(a) = 1, and n nilpotent

If we allow for then to be a more general nilpotent algebra, many more possibilities arise.
Unfortunately, not all nilpotent algebras are known; however, all nilpotent algebras up to
dimension 7 are given in[25]. Other examples, such as some infinite series of nilpotent
algebras, are given in[17].

For all these spaces, the metric can be written in horospherical coordinates where the
horospheres arenilgeometries, Niln. As an example, we can consider the space havingNil4

horospheres.9 Let Nil4 have the orthonormal left-invariant one-forms

ω1 = dv, ω2 = dx − ydv, ω3 = dy − zdv, ω4 = dz. (34)

8 For more about these spaces and their relatives, consult for example[17,22–24].
9 There is only one irreducible four-dimensional real Lie algebra which is nilpotent. This algebra is three-step

nilpotent and therefore it is not a generalised Heisenberg algebra.
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Then the metric of the form(17)with ωi given as above, and

(p1, p2, p3, p4) =
(

1

2
√

5
,

2√
5
,

3

2
√

5
,

1√
5

)
(35)

is an Einstein space withRµν = −(3/2)gµν.

5.4. dim(a) > 1, and n nilpotent

In this case, the horospheres are solvmanifolds themselves. All of these cases are not
known, but one can find some particular examples of such spaces.

For example, there are solutions as follows. Consider the solvegeometry having the
orthonormal left-invariant one-forms

ωn = dv, ωi = e−qivdxi, i = 1, . . . , (n− 1),
n−1∑
i=1

qi = 0. (36)

Then the metric of the form(17)with ωi given as above, and

p1 = p2 = · · · = pn−1 ≡ p, pn = 0, p2 = 1

n− 1

n−1∑
i=1

q2
i (37)

is an Einstein space withRµν = −(n− 1)p2gµν.

6. Black holes

As we now iteratively have constructed spaces for which the horospheres are products of
generalised Heisenberg spaces, nilgeometries, solvegeometries and a Ricci-flat space, one
might wonder if there are similar generalisations of black holes. Indeed there are.

Assume there is a negatively curved Einstein space given by

ds2 = −e−2pwdt2 + dw2 +
n∑
i=1

e−2qiw(ωi)2, Rµν = −α2gµν (38)

(here,pmust bep = (
∑
q2
i )/(

∑
qi)). Then there is a corresponding “black hole” spacetime

for which the metric takes the form

ds2 = −e−2pwF(w)dt2 + dw2

F(w)
+

n∑
i=1

e−2qiw(ωi)2,

F(w)= 1 −M exp

[(
p+

n∑
i=1

qi

)
w

]
, Rµν = −α2gµν. (39)

Hence, by doing a proper identification we can from the above construct black hole space-
times which have horizon geometries modelled on

S ∼= Rm ×M1 ×M2 × · · · ×Mk,
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whereRm is anm-dimensional Ricci-flat manifold and eachMi is a generalised Heisenberg
group, nilgeometry or a solvegeometry, as follows: we choose a discrete groupΓ ⊂ Isom(S)
which acts freely and properly discontinuously onS, and construct the quotientS/Γ . Lo-
cally, asw → −∞, all these black hole spacetimes asymptotically approach the spacetime
given inEq. (38).

Here a comment is required. One usually assume that the horizon of the black hole has
finite volume (possibly also compact). Not all geometries of the above class allow for a
finite volume quotient, i.e. thatS/Γ has finite volume. Assuming a finite volume horizon,
we have to restrict ourselves to model geometries in the sense of Thurston[1].

Model geometry: a pair(X,G) with X a connected and simply connected manifold, and
Ga Lie group acting transitively onX, is called amodel geometry if the following conditions
are satisfied:

1. X can be equipped with aG-invariant Riemannian metric.
2. G is maximal, i.e. there does not exist a larger groupH ⊃ G, whereH acts transitively

onX and requirement 1 is satisfied.
3. There exists a discrete subgroupΓ ⊂ G such thatX/Γ has finite volume.

The model geometries in dimension 3 were found by Thurston[1,2] and are usually
called “the 8 Thurston geometries”. The four-dimensional model geometries were found
by Filipkiewicz [26] (see also[27,28]). Hence, by allowing only model geometries as the
geometry of the horospheres, we ensure that there exists aΓ ⊂ Isom(S) such thatS/Γ has
finite volume.10

Note that the horizons of these black holes are not Einstein manifolds which implies
that the analysis done in[11] is not applicable for these black holes. However, it would be
interesting to do a similar analysis and check whether or not these black holes are stable.

6.1. Six-dimensional black holes modelled on solvegeometries

Let us consider a six-dimensional example, where the horizon is modelled on the infinite
series of model geometries called11 Sol4m,n.

The solvable Lie groupsSol4m,n can be considered asSol4m,n = R
3
�A R, whereA is the

matrix

A = exp

 at 0 0

0 bt 0

0 0 ct

 . (40)

Here,a > b > c, a+ b+ c = 0, andλi = ea,eb,ec are the roots of the cubic

λ3 −mλ2 + nλ− 1 = 0 (41)

10 The five-dimensional black hole solutions with horizon geometry modelled on the three-dimensional model
geometries were considered in[29]. See also[30] in this respect.
11 There are two other solvegeometries in dimension 4 which are model geometries; namely the ones called

Sol40 andSol41. In the notation of Patera et al.[31,32], Sol41 has the simply transitive groupA4,8 while Sol40 has

A
−1/2,−1/2
4,5 and the infinite seriesA−2q,q

4,6 [33].
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with m, n positive integers. Note that ifm = n, we haveλ2 = 1 and thusSol4m,m =
Sol3 × E

1. Proportional matricesA have isomorphic geometries. An invariant metric is12

dσ2 = dv2 + eavdx2 + ebvdy2 + ecvdz2. (42)

Hence, this metric is included in the example inSection 5.4. This means that by using this
example, and the Einstein metric

dw2 − e−2qwdt2, (43)

we can construct a six-dimensional Einstein space by

M(E1)�M(Sol4m,n) = M(E1 × Sol4m,n). (44)

By using the corresponding metric(39) we can construct a black hole metric where the
horizon is modelled on the geometriesSol4m,n.

This is only one example of the possible black holes one can construct in six dimensions.
Using, for example, the example inSection 5.3we can similarly construct six-dimensional
black holes modelled onNil4.

7. Summary

In this paper we have systematically constructed negatively curved Einstein spaces of
various dimensions. The spaces can be classified in terms of the geometry of the horo-
spheres, and by using a set of building blocks we gave an iterative procedure of construct-
ing higher-dimensional Einstein spaces for which the geometry of the horospheres was an
arbitrary product of generalised Heisenberg spaces, nilgeometries, solvegeometries, and a
Ricci-flat space. The building blocks could be any of the homogeneous Einstein solvman-
ifolds. We also showed that all of these spaces have black hole analogues by explicitly
writing down the metrics. These black holes provide us with an infinite series of topolog-
ically distinct black holes in higher dimensions. The horizon of these black holes are not
Einstein in general, however, the non-Einstein part is always modelled on the so-called
model geometries.

Here in this paper, only a specific type of black holes were considered. However, the
Einstein metrics also allow for BTZ black holes[4,8]. For example, using the metric(12)
with m = 1, we can identify points under the action ofφλ ◦ A, whereφλ is the dilation
andA ∈ U(n− 1), to create a black hole. By performing this identification we create BTZ
black holes similar to those found by Bañados[34]. These BTZ constructions have not
been explored in this paper, but it would certainly be interesting to investigate these BTZ
analogues as well.

This paper has set the scene for investigation of higher-dimensional black holes with
horizon geometries which are not Einstein. Several unanswered questions still remain. For
example, are these black holes stable? What role does the boundary of these spaces play

12 This geometry corresponds to the Lie algebraA
p,q

4,5 with p = b/a andq = c/a in the notation of Patera et al.
[31,32].
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for the physics in the interior? Is there an AdS/CFT version for these spaces? So far, none
of these questions have been investigated. Only time, and some more work, can tell what
their answers might be.
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Appendix A. Curvature tensors

Consider the metric

ds2 = −e−2pw e2βdt2 + e−2βdw2 +
n∑
i=1

e−2qiw(ωi)2, (A.1)

whereβ = β(w). Assume also that the metric withβ = 0 is homogeneous where e−qiwωi

are left-invariant one-forms, and that the space with metric

d̃s
2 =

n∑
i=1

(ωi)2 (A.2)

is homogeneous and has the Riemann and Ricci tensors given byR̃ijkl andR̃ij, respectively.
These spaces include most of the cases considered in this paper.

In the orthonormal frame, the independent components of the Riemann tensor are given
by (no sum unless explicitly specified)

Rtwtw = −(β′′ + 2(β′)2 − 3pβ′ + p2)e2β, Rtiti = −qi(p− β′)e2β,

Riwiw = −qi(qi − β′)e2β, Rijij
i�=j

= R̃ijij − qiqj e2β, rest of Rijkl = R̃ijkl. (A.3)

The Ricci tensor is thus

Rtt =
[
β′′ + 2(β′)2 − 3pβ′ + p2 + (p− β′)

n∑
i=1

qi

]
e2β,

Rww = −
[
β′′ + 2(β′)2 − 3pβ′ + p2 +

n∑
i=1

qi(qi − β′)

]
e2β,

Rij = R̃ij − δijqi

(
n∑
k=1

qk + p− 2β′
)

e2β. (A.4)

For an Einstein space we haveRtt + Rww = 0, which impliesp = (
∑
q2
i )/(

∑
qi). Note

also that the non-black hole solutions are given byβ′ = β = 0.
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